Inactivation of the Sodium Current in Myxicola Giant Axons
نویسندگان
چکیده
Experiments were conducted on Myxicola giant axons to determine if the sodium activation and inactivation processes are coupled or independent. The main experimental approach was to examine the effects of changing test pulses on steady-state inactivation curves. Arguments were presented to show that in the presence of a residual uncompensated series resistance the interpretation of the results depends critically on the manner of conducting the experiment. Analytical and numerical calculations were presented to show that as long as test pulses are confined to an approximately linear negative conductance region of the sodium current-voltage characteristic, unambiguous interpretations can be made. When examined in the manner of Hodgkin and Huxley, inactivation in Myxicola is quantitatively similar to that described by the h variable in squid axons. However, when test pulses were increased along the linear negative region of the sodium current-voltage characteristic, steady-state inactivation curves translate to the right along the voltage axis. The shift in the inactivation curve is a linear function of the ratio of the sodium, conductance of the test pulses, showing a 5.8 mv shift for a twofold increase in conductance. An independent line of evidence indicated that the early rate of development of inactivation is a function of the rise of the sodium conductance.
منابع مشابه
Sodium efflux in Myxicola giant axons
Several properties of the Na pump in giant axons from the marine annelid Myxicola infundibulum have been determined in an attempt to characterize this preparation for membrane transport studies. Both NaO and KO activated the Na pump of normal microinjected Myxicola axons. In this preparation, the KO activation was less and the NaO activation much greater than that found in the squid giant axon....
متن کاملQuantitative Description of Sodium and Potassium Currents and Computed Action Potentials in Myxicola Giant Axons
All analysis of the sodium and potassium conductances of Myxicola giant axons was made in terms of the Hodgkin-Huxley m, n, and h variables. The potassium conductance is proportional to n(2). In the presence of conditioning hyperpolarization, the delayed current translates to the right along the time axis. When this effect was about saturated, the potassium conductance was proportional to n(3)....
متن کاملDelays in inactivation development and activation kinetics in myxicola giant axons
Na inactivation was studied in Myxicola (two-pulse procedure, 6-ms gap between conditioning and test pulses). Inactivation developed with an initial delay (range 130-817 microseconds) followed by a simple exponential decline (time constant tau c). Delays (deviations from a simple exponential) are seen only for brief conditioning pulses were gNa is slightly activated. Hodgkin-Huxley kinetics wit...
متن کاملCurrent Separations in Myxicola Giant Axons
The effect of reducing the external sodium concentration, [Na](o), on resting potential, action potential, membrane current, and transient current reversal potential in Myxicola giant axons was studied. Tris chloride was used as a substitute for NaCl. Preliminary experiments were carried out to insure that the effect of Tris substitution could be attributed entirely to the reduction in [Na](o)....
متن کاملLeak Current Rectification in Myxicola Giant Axons
Early leak current, i.e. for times similar to the time to peak of the transient current was measured in Myxicola giant axons in the presence of tetrodotoxin. The leak current-voltage relation rectifies, showing more current for strong depolarizing pulses than expected from symmetry around the holding potential. A satisfactory practical approximation for most leak corrections is constant resting...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 59 شماره
صفحات -
تاریخ انتشار 1972